Math 535: Topology
Homework 1

Mueen Nawaz
Problem 1

Find all topologies on the set $X = \{0, 1, 2\}$.

Solution:
In the list below, $a, b, c \in X$ and it is assumed that they are distinct from one another.

- $\mathcal{P}(X)$ the power set of X (discrete topology).
- $\{\phi, X\}$ (the trivial topology)
- $\{\phi, X, \{a\}\}, a \in \{0, 1, 2\}$. There are 3 of these.
- $\{\phi, X, \{a, b\}\}$ and other combinations of single subsets of size two from X. There will be 3 of these.
- $\{\phi, X, \{a, b\}, \{d\}\}, d \in X$. d need not be distinct from a or b. There will be 9 of these (3 ways of choosing the subset of size two, and three of choosing the singleton).
- $\{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$. There will be 3 of these (the subsets of size two are determined by the element a).
- $\{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. There will be 3 of these.

Problem 2

(i) Show that if X is a set with the trivial topology and Y is any topological space, then every function $f : Y \to X$ is continuous.

(ii) Show that if X is a set with the discrete topology, and Y is any topological space, then every function $f : X \to Y$ is continuous.

Solution:
(i) Let $U \subseteq X$ be open. As X has the trivial topology, this means that U is either ϕ or X. If $U = \phi$, then $f^{-1}(U) = \phi$, which is open. If $U = X$, then $f^{-1}(U) = Y$, and Y is always open, as it is a member of any topology defined on Y. Thus, if U is any open set in X, $f^{-1}(U)$ is also an open set in Y. Hence, f is continuous.

(ii) Let U be any open set in Y. Clearly, $f^{-1}(U)$ is a subset of X. However, as X has the discrete topology, all its subsets are open. Hence, $f^{-1}(U) \in \mathcal{P}(X)$ is open in X for any open U in Y. Thus, f is continuous.
Problem 3

Use de Morgan’s Laws to prove:

(i) The union of finitely many closed subsets of a topological space is closed.
(ii) The intersection of arbitrarily many closed subsets of a topological space is closed.

Solution:

Let X be the topological space.

(i) Let A_1, A_2, \ldots, A_n be closed sets with $A_i \subseteq X$. Let $B_i = X \setminus A_i$ for each i. By the definition of closed sets, all the B_i are open. Now $\bigcup_{i=1}^{n} A_i = X \setminus \bigcap_{i=1}^{n} (X \setminus A_i) = X \setminus \bigcap_{i=1}^{n} B_i$

Since B_i are open, any finite number of intersections of B_i is open. So $\bigcap_{i=1}^{n} B_i = C$ is open. Thus, $\bigcup_{i=1}^{n} A_i = X \setminus C$. As C is open, the finite union of closed sets is closed.

(ii) Let $A_d, \ d \in D$ be arbitrarily many closed subsets of X. Let $B_d = X \setminus A_d$. As in the previous section, B_d is open for all $d \in D$. Now $\bigcap_{d \in D} A_d = X \setminus \bigcup_{d \in D} (X \setminus A_d) = X \setminus \bigcup_{d \in D} B_d$.

Since the B_d are open, any union of B_d is also union. So $\bigcup_{d \in D} B_d = C$ is open. Thus, $\bigcap_{d \in D} A_d = X \setminus C$. As C is open, the intersection of arbitrarily many closed sets is closed.

Problem 4

Show that if X is a set and a collection σ of subsets of X satisfies:

C1 The set σ is closed under finite unions.

C2 The set σ is closed under arbitrarily many intersections.

C2 The set σ contains ϕ and X.

Then the collection $\tau = \{U \subseteq X | X \setminus U \in \sigma\}$ is a topology on X.

Solution:

1. Let $A_d \in \tau$ with $d \in D$. Note that $\bigcup_{d \in D} A_d = X \setminus \bigcap_{d \in D} (X \setminus A_d)$. As $X \setminus A_d \in \sigma$, it is closed under intersections (C2). Thus, $\bigcap_{d \in D} (X \setminus A_d) \in \sigma$ and $\bigcup_{d \in D} A_d \in \tau$ by the manner in which τ is constructed.

2. Let $A_1, A_2, \ldots, A_n \in \tau$. Note that $\bigcap_{i=1}^{n} A_i = X \setminus \bigcup_{i=1}^{n} (X \setminus A_i)$. As $X \setminus A_i \in \sigma$, it is closed under finite unions (C1). Thus, $\bigcup_{i=1}^{n} (X \setminus A_i) \in \sigma$ and $\bigcap_{i=1}^{n} A_i \in \tau$ by the manner in which τ is constructed.

3. ϕ is in τ as $\phi = X \setminus X$ and $X \in \sigma$. Likewise, X is in τ as $X = X \setminus \phi$ and $\phi \in \sigma$.

Thus, τ is a topology on X.

Page 2 of 4
Problem 5

Give an example of a topological space and a collection \(\{W_\alpha\}_{\alpha \in A} \) of closed subsets such that their union \(\bigcup_{\alpha \in A} W_\alpha \) is not closed.

Solution:
Let \(\mathbb{R} \) be the space with the usual topology (i.e. based on the usual metric). Let \(A_n = (-\frac{1}{n}, \frac{1}{n}), \ n \in \mathbb{N} \). Define \(W_n = \mathbb{R} \setminus A_n \). As \(A_n \) is open, \(W_n \) is closed. Now \(\bigcup_{n \in \mathbb{N}} W_n = \mathbb{R} \setminus \bigcap_{n \in \mathbb{N}} A_n \). But this is just \(\mathbb{R} \setminus \{0\} \), which is open as it is the union of two open intervals: \((-\infty, 0) \cup (0, \infty)\). Therefore, this union of closed sets is not closed.

Problem 6

Let \(\mathbb{Q} \subseteq \mathbb{R} \) be the subset of rational numbers. Show that \(\mathbb{Q} \) is neither open nor closed.

Solution: Note that between any two rationals, there exists an irrational. Likewise, between any two irrationals, there exists a rational.

Let \(x \in \mathbb{Q} \). Then every open ball (i.e. interval) around \(x \) necessarily contains an irrational. For example, if \(x \in (a, b) \) where \(a \) and \(b \) are rational numbers, we know that an irrational \(r \) exists with \(a < r < b \) — regardless of the values of \(a \) and \(b \). Therefore, since one cannot find any open intervals about \(x \in \mathbb{Q} \) that are subsets of \(\mathbb{Q} \), \(\mathbb{Q} \) cannot be open.

Likewise, consider \(A = \mathbb{R} \setminus \mathbb{Q} \). This is the set of irrationals. Let \(x \in A \). Again, using the same argument above, let \(x \in (a, b) \) with \(a, b \in A \). There exists a rational \(y \) such that \(a < y < b \). Therefore, there is no open interval about \(x \) that is contained in \(A \). Hence, \(A \) is not open, and therefore \(\mathbb{Q} = \mathbb{R} \setminus A \) is not closed.

Problem 7

Let \(X \) be any set and define a nonempty subset \(U \subseteq X \) to be open if \(X \setminus U \) is finite. Show that this defines a topology on \(X \).

Solution:
(i) Let \(A_d, \ d \in D \) be open subsets of \(X \). Thus, \(B_d = X \setminus A_d \) is finite. \(\bigcup_{d \in D} A_d = X \setminus \bigcap_{d \in D} B_d \). Since \(\bigcap_{d \in D} B_d \subseteq B_d \) and since \(B_d \) is finite, therefore \(\bigcap_{d \in D} B_d \) is finite. Thus, \(\bigcup_{d \in D} A_d = X \setminus C \) where \(C = \bigcap_{d \in D} B_d \) is finite and is therefore an open set as well. Hence, open sets are closed under arbitrary unions.

(ii) Let \(A_1, A_2, \ldots, A_n \) be open subsets of \(X \). Thus, \(B_i = X \setminus A_i \) is finite. Now \(\bigcap_{i=1}^n A_i = X \setminus \bigcup_{i=1}^n B_i \). However, \(\bigcup_{i=1}^n B_i \) is the finite union of finite sets, and hence is itself finite. So
\[\bigcap_{i=1}^{n} A_i = X \setminus C \text{ where } C = \bigcup_{i=1}^{n} B_i \text{ is finite and is thus an open set.} \]

(iii) Assume \(X \) is nonempty. If \(X \) is finite, then \(X = X \setminus \phi \), and so \(X \) is open as well (\(\phi \) is trivially finite) and is in the topology. Likewise, \(\phi = X \setminus X \), and since \(X \) is finite, \(\phi \) is open and in the topology.

If \(X \) is infinite, pick two distinct elements \(a \) and \(b \) from \(X \). Now \(A = X \setminus \{a\} \) and \(B = X \setminus \{b\} \) are open sets, by definition. As \(X = A \cup B \), \(X \) is also open. Also, \(\phi = A \cap B \), so \(\phi \) is also open.

So regardless of whether \(X \) is finite or infinite, \(\phi \) and \(X \) will be in the topology.

Problem 8

Let \(B \) be a basis for a topology on \(X \) and define a subset \(U \subseteq X \) to be open, if for every \(x \in U \), there is a \(V \in B \) such that \(x \in V \subseteq U \). Show that this satisfies the definition of a topology.

Solution:

(i) Let \(A_d, d \in D \) be open subsets of \(X \). Let \(E = \bigcup_{d \in D} A_d \). Let \(x \in E \). There must exist a \(A_d \) such that \(x \in A_d \). Since \(A_d \) is open, there exists a \(V_x \in B \) such that \(x \in V_x \subseteq A_d \). However, this means that \(x \in V_x \subseteq E \) as \(A_d \subseteq E \). Thus, by definition, \(E \) is also open. Therefore this collection of open sets is closed under arbitrary unions.

(ii) First, note that if \(V_1, V_2, \ldots, V_n \in B \), and there exists an \(x \) such that \(x \in V_i \forall i \in \{1, 2, \ldots, n\} \), then there exists a \(V \in B \) such that \(x \in V \subseteq \bigcap_{i=1}^{n} V_i \). This follows from a straightforward induction on the definition of a basis.

Now let \(A_1, A_2, \ldots, A_n \) be open sets in \(X \). Let \(x \in E = \bigcap_{i=1}^{n} A_i \). Thus \(x \in A_i \forall i \). Thus, for each \(i \), there exists a \(V_i \) such that \(x \in V_i \subseteq A_i \). Therefore, \(x \in \bigcap_{i=1}^{n} V_i \). By the note in the previous paragraph, there is a \(V \in B \) such that \(x \in V \subseteq \bigcap_{i=1}^{n} V_i \). Since \(\bigcap_{i=1}^{n} V_i \subseteq E \), we have \(V \subseteq E \). Thus, \(E \) is open. Therefore open sets in \(X \) are closed under finite intersections.

(iii) \(\phi \) is open trivially, as there is no \(x \) in \(\phi \). By the definition of a basis, if \(x \in X \), there is a \(V \in B \) such that \(x \in V \). As \(V \subseteq X \), this means that \(X \) is also open.